Shape and area fluctuation effects on nucleation theory.

نویسندگان

  • Santi Prestipino
  • Alessandro Laio
  • Erio Tosatti
چکیده

In standard nucleation theory, the nucleation process is characterized by computing ΔΩ(V), the reversible work required to form a cluster of volume V of the stable phase inside the metastable mother phase. However, other quantities besides the volume could play a role in the free energy of cluster formation, and this will in turn affect the nucleation barrier and the shape of the nucleus. Here we exploit our recently introduced mesoscopic theory of nucleation to compute the free energy cost of a nearly spherical cluster of volume V and a fluctuating surface area A, whereby the maximum of ΔΩ(V) is replaced by a saddle point in ΔΩ(V, A). Compared to the simpler theory based on volume only, the barrier height of ΔΩ(V, A) at the transition state is systematically larger by a few kBT. More importantly, we show that, depending on the physical situation, the most probable shape of the nucleus may be highly non-spherical, even when the surface tension and stiffness of the model are isotropic. Interestingly, these shape fluctuations do not influence or modify the standard Classical Nucleation Theory manner of extracting the interface tension from the logarithm of the nucleation rate near coexistence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metastability in fluctuation-driven first-order transitions: Nucleation of lamellar phases.

The nucleation of a lamellar phase from a supercooled homogeneous phase in a fluctuation driven first-order transition is studied, based on a phenomenological free energy due to Brazovskii. The absence of phase coexistence in the corresponding mean-field approximation makes application of the standard droplet theory of homogeneous nucleation problematic. A self-consistent coarse-graining proced...

متن کامل

An empirical technique for prediction of nucleation mechanism and interfacial tension of potassium chloride nanoparticles

Prediction of the nucleation mechanism is one of the most critical factors in the design of a crystallization system. Information about the nucleation mechanism helps to control the size, shape, size distribution, and purity of the produced crystals. When the crystallization method is used for producing nanoparticles, the nucleation mechanism should be predicted. In this study, an empirical cor...

متن کامل

Statistical prefactor and nucleation rate near and out of the critical point

The nucleation rate derived in the classical theory contains at least one undetermined parameter, which may be expressed in terms of the Langer first-principles theory. But the uncertainties in the accounting for fluctuation modes, which are either absorbed into the free energy of a critical cluster or not, result in different evaluations of the statistical prefactor and nucleation rate. We get...

متن کامل

Nucleation Theory: A Literature Review and Applications to Nucleation Rates of Natural Gas Hydrates

Predicting the onset of hydrate nucleation in oil pipelines is one of the most challenging aspects in the flow assurance modelling work being performed at the Center for Hydrate Research. Nucleation is initiated by a random fluctuation which is able to overcome the energy barrier for the phase transition, once such a fluctuation occurs, further growth is energetically favourable. Historically t...

متن کامل

The self-consistent bounce: an improved nucleation rate

Abstract We generalize the standard computation of homogeneous nucleation theory at zero temperature to a scenario in which the bubble shape is determined self-consistently with its quantum fluctuations. Studying two scalar models in 1+1 dimensions, we find the self-consistent bounce by employing a two-particle irreducible (2PI) effective action in imaginary time at the level of the Hartree app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 140 9  شماره 

صفحات  -

تاریخ انتشار 2014